Machine learning prediction models for clinical management of blood-borne viral infections: A systematic review of current applications and future impact


BACKGROUND: Machine learning (ML) prediction models to support clinical management of blood-borne viral infections are becoming increasingly abundant in medical literature, with a number of competing models being developed for the same outcome or target population. However, evidence on the quality of these ML prediction models are limited. OBJECTIVE: This study aimed to evaluate the development and quality of reporting of ML prediction models that could facilitate timely clinical management of blood-borne viral infections. METHODS: We conducted narrative evidence synthesis following the synthesis without meta-analysis guidelines. We searched PubMed and Cochrane Central Register of Controlled Trials for all studies applying ML models for predicting clinical outcomes associated with hepatitis B virus (HBV), human immunodeficiency virus (HIV), or hepatitis C virus (HCV). RESULTS: We found 33 unique ML prediction models aiming to support clinical decision making. Overall, 12 (36.4%) focused on HBV, 10 (30.3%) on HCV, 10 on HIV (30.3%) and two (6.1%) on co-infection. Among these, six (18.2%) addressed the diagnosis of infection, 16 (48.5%) the prognosis of infection, eight (24.2%) the prediction of treatment response, two (6.1%) progression through a cascade of care, and one (3.03%) focused on the choice of antiretroviral therapy (ART). Nineteen prediction models (57.6%) were developed using data from high-income countries. Evaluation of prediction models was limited to measures of performance. Detailed information on software code accessibility was often missing. Independent validation on new datasets and/or in other institutions was rarely done. CONCLUSION: Promising approaches for ML prediction models in blood-borne viral infections were identified, but the lack of robust validation, interpretability/explainability, and poor quality of reporting hampered their clinical relevance. Our findings highlight important considerations that can inform standard reporting guidelines for ML prediction models in the future (e.g., TRIPOD-AI), and provides critical data to inform robust evaluation of the models.


Ajuwon BI, Awotundun ON, Richardson A, Roper K, Sheel M, Rahman N, Salako A, Lidbury BA




  • Epidemiology and Determinants of Health
    • Epidemiology
  • Population(s)
    • General HIV- population
  • Prevention, Engagement and Care Cascade
    • Engagement and Care Cascade
  • Engagement and Care Cascade
    • Treatment
  • Co-infections
    • Hepatitis B, C


Abstract/Full paper

Email 1 selected articles

Email 1 selected articles

Error! The email wasn't sent. Please try again.

Your email has been sent!